

Defining Standard Gaze Tracking API

Abstract
In this paper we argue of the need for a definition of
API that would support the system-independent deve-
lopment of applications with gaze input. Our proposal
for such API is based on minimal yet extendable sets of
functions and data layers for data transmission from
data producers to data consumers. We also hope that
some kind of standard API based on our proposal will
be supported by eye-tracking community defining data
layers and creating system-supporting modules.

Author Keywords
Gaze tracking; API standardization; gaze data protocol.

ACM Classification Keywords
H.5.2. User interfaces: Input devices and strategies.

General Terms
Human Factors; Design.

Introduction
Recent improvements in eye-tracking technology
supported by increasing use of eye-tracking systems for
commercial purposes (e.g., for usability services) has
prepared the ground for the upcoming mass marketing.
High competition between manufacturers of high-end
eye-tracking systems, numerous low-cost solutions
based on ordinal web-cameras and free software, and
increasing interest to the domain from IT industry
giants like Google, Fujitsu, Sony, Microsoft and others1
are already starting to push the prices of commercial
systems down2 and should eventually be found build-in
into mobile devices and affordable for desktop PC users

Despite this clear progress and anticipation of a wide
spread of the technology there are still some issues to
be solved before it becomes truly mature. One of these
issues in this domain comes from the fact that each
eye-tracking system requires a separate piece of code
to communicate with end-user applications and handle
data it provides. It means that, if nothing changes on
this side, even when the technology becomes accessible
and affordable for regular users, most of gaze-based
applications will support a limited number of systems
and require a very exact match between what is
supported by a gaze-based application and what is
installed/embedded on the user device. One can

1 For example, see http://www.geekchunk.com/reviews/3764/
2 For example, see http://phandroid.com/2013/01/07/tobii-

eyesight-controlled-computer-to-be-google-glass-partner/

Copyright is held by the author/owner(s).

CHI 2013 Workshop on "Gaze Interaction in the Post-WIMP World", April

27, 2013, Paris, France.

Oleg Špakov
University of Tampere
Kanslerinrinne 1
Tampere, FIN-33014, Finland
oleg.spakov@uta.fi

imagine how complex would be the software develop-
ment and compatibility maintaining if end-user
applications require a separate code for a mouse of
each vendor simply to respond to mouse events. This
issue becomes even greater when eye tracking is taken
away from desktop computers into pervasive and
mobile devices that have even a wider diversity in
functionality than conventional desktop PCs.

As a consequence, most of the existing gaze-based
applications can interact with a certain eye-tracking
system only. Some applications like OGAMA3 (open-
source gaze path analysis software) consequentially
increase the number of supporting systems. However,
there was at least one attempt to develop some sort of
middleware which serves as a unifier of the way to
interact with eye-tracking systems and receive data
using same protocol regardless to the system in use.
ETU-Driver4, a COM library, provides transparent access
to several commercial and web camera based systems.
All gaze-based applications that use this middleware
may start using a new system without upgrade once a
supporting ETU-Driver module for this system is
developed and installed. While being used for
developing many gaze-based applications (mostly, by
the author and his colleagues), this solution has few
restrictions. In particular, the data protocol is fixed as a
COM-structure; it make impossible to access system-
specific features: for example, it misses fields to
accommodate eye position in camera view that is
reporting by many remote eye trackers.

Some of other possible issues in the exiting solution
were discussed by Daunys and Vyšniauskas in [1],

3 http://www.ogama.net/
4 http://www.eyeinteract.com/show.php?app=27

where authors proposed an alternative approach by
using one of the MS Windows messages
(WM_COPYDATA) to communicate with eye-tracking
system systems and receive data via a dedicated
application named “COGAIN Brocker”. Authors claim
that this approach allows faster data transmission from
a system to a client application. Probably, it also could
allow using flexible data protocols, although the authors
do not discuss this aspect of their solution.

Eye-Tracking Uniform Development Tool
A discussion on a search of new ways for the
convenient system-independent development of gaze-
based application has been initiated few years ago on
the COGAIN forum5. Although no clear agreement was
archived on how the new middleware or SDK should
look like, it gave a clear hint that manufacturers of eye-
tracking systems would not like to have a functionality
or output from their products somehow restricted:
developers should have a full access to the services a
certain system supports and provides.

We suggest that definition of some basic yet extendable
functionality and a layered data protocol may work best
in this case and lead to support of this initiative by
market players in this domain. “Layered” protocol is the
one that may contain various sets of data; one layer is
“predefined” and contains a minimal set of very basic
data that each system must be capable to provide, and
more layers can be defined by the community as a “de-
facto” standard. The basic sets of functions (interfaces)
could be extended to provide full native system API.

In this solution, each eye-tracking system is supported
by a dedicate module that implements predefined

5 http://www.cogain.org/forum

interfaces (like in ETU-Driver) and properly formats
data according to the definitions of layers. An end-user
application that interacts with the system specifies what
data layers it requires. Since data flow via same
channel (event), XML is supposed to be used to format
data (other protocols, like JSON may be appropriate as
well). Definitions of data layers should be publically
maintained (e.g, placed on some public resource, such
as COGAIN.org, where a discussion for new definitions
can take place). We suggest naming the predefined
protocol as “Basic” with the following variables: a
timestamp (s), X and Y gaze coordinates relative to the
screen (pixels or normalized values).

Systems available on the machine in use can be
detected using so-called system browsers. Browsers
also report when a system becomes (un)available.
There can be several browsers installed on the same
machine, and each browser can support more than one
system. It is expected, that each manufacturer provides
a browser that supports all its trackers. Technically, the
browser interface can be implemented in the module
where the system interface is implemented.

For MS Windows operating system we suggest to imple-
ment the system, browser and supplementary inter-
faces in COM libraries. To unify the way the browsers
could be loaded from end-user applications, we suggest
placing IDs of classes (CLSID) that implement the
browser interface into a dedicated registry key (say, as
a key name in HKCU/Software/ETUDE/Browsers, and
the key value stores its name). The list of the interfaces
and their IDs (IID) could also be published on a public
resource, like GitHub, to allow the development of
system and browser modules available to all.

To make the solution extendable, we propose also a
definition of an interface for plugins. Plugins may
request a certain data layer(s) and produce another
data layer(s). Plugins and system modules must
implement same interface designed for data producers,
so that the data delivery to end-users applications
could be unified. The list of plugin CLSIDs could be
placed into HKCU/Software/ETUDE/Plugins.

Developers of gaze-based applications have to follow
these steps when using this solution for obtaining input
from eye trackers: 1) load all browsers and plugins
listed in HKCU/Software/ETUDE, 2) connect to one of
available eye trackers which 3) acknowledges the
request for required data layer(s). Due to the
restriction in space, we list in Figure 1 only the
summary of the interfaces used in our solution. The
source code in C# with interface definitions,
implementation of two systems modules (gaze tracker
emulation by mouse, and Tobii T/X series by Tobii
Technologies), a browser, utilities for modules and
gaze-based application developers (including a
“manager” that accommodates browsers and plugins
loading routines and some other helping functionality),
and a proof-of-concept is available on SourceForge6.

Conclusion
We drew one of the main technological issues for the
fast introduction of eye-tracking technology into the
everyday use and discussed the next steps on the way
to the standardization of eye-tracking API. The
suggested milestones of this API consist of 1) common
minimal interfaces, 2) flexible and extendable data
protocol, and 3) openness in setting up this standard.

6 http://sourceforge.net/projects/eyetrackingsdk/

Acknowledgements
We thank all the participant of the discussion on
COGAIN forum for their contribution into the vision
expressed here and Päivi Majaranta for the useful
comments on this manuscript.

References
[1] Daunys, G., Vyšniauskas, V. Eye Tracker
Connectivity: Alternatives to ETU-Driver. In
Proceedings of the 5th Conference on Communication
by Gaze Interaction (COGAIN 2009): Gaze Interaction
For Those Who Want It Most, Lyngby:DTU, 2009. ISBN
9788764304756. 77-80, 2009.

Figure 1. The list of interfaces in the proposed standard eye-tracking API

